

What is the magnitude of force F?

A 0.40 N **B** 2.0 N **C** 2.6 N

Example ON/2018/PII

11 A uniform rod of length 200 cm is freely pivoted at point P. The rod is held horizontally in equilibrium by a 60 N weight that is attached to the rod by a string passing over a frictionless pulley.

D

ON/2014/PII Example

12 A uniform ladder rests against a vertical wall where there is negligible friction. The bottom of the ladder rests on rough ground where there is friction. The top of the ladder is at a height h above the ground and the foot of the ladder is at a distance 2a from the wall.

13 A cylinder of weight W is placed on a smooth slope. The contact force of the slope on the cylinde is R. A thread is attached to the surface of the cylinder. The other end of the thread is fixed.

ala

m kashanrashid.com kasnanrasma.com kasha hid.com kashanrashid.com kashar id.com kashat

Torque of a couple	F = ION	F = ION
Couple forces are	cash inrash	la.co
· equal in magnitude	shanrash	id Con kacho
· opposite in direction	mrash	
· acting at a distance	kashanrash	COF=10N
from one another.	F=ION	Not a pair of
om kushanrashid.com		couple forces
om kashanrashid.com	$\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2$	hid.com kash
$x \times x$	KG = Fx + Fx	hid com kash
	$T = 2F_2$	hid com kash
com krishanrashid con	torque of a	couple.
com kashanrashid.con	$\mathcal{T} = F \times 2 \mathbf{x}$	shia.com kash
"It is the product of one	T = Fxd > perpend	Ligular distance
of the two forces and	between	the two forces.
the perpendicular distance	kashanra	shid.com kus
between Them. ??	kachanta	ishid.com kas
.com kashanrashid.co	mkushanra	ishid.com kas
.com kushanrashid.co	mkashant	nshid.com kas
1.com Kashaprashid.co	mkasnam	ashid.com kas
d.com kasharashid.co	m kashann	achid.com ka
d.com kasi	om kashanr	ashid com ka
d.com kastick in brobid C	om kashani	ashid com ka
d com kashannashid.	omkashani	ashia.com ka
id com kashani ashid.c		rashia.com ke
id com kashanrashla.c	em kashan	rashid.com k
la.com kashanrashid.c	on kashan	rashid.com ki
id.com kashanrashid.c	com kachar	rashid.com K
id.com kashanrashid.	com kusilar	rashid.com k
hid.com kushanrashid.	com kashai	arashid.com k
hid.com kashanrashid.	com kasna	arashid.com

N [4]

Fig. 3.1

A man of weight 880N stands a distance *x* from end A. The ground exerts a vertical force F_A on the plank at end A and a vertical force F_B on the plank at end B. As the man moves along the plank, the plank is always in equilibrium.

(a) (i) Explain why the sum of the forces F_A and F_B is constant no matter where the man stands on the plank.

For plank to be in equilibrium, total downward and upward force must be equal. As downward force is constant, so would the sum of Fa+Fe. [2]

в

(ii) The man stands a distance x = 0.50 m from end A. Use the principle of moments to calculate the magnitude of $F_{\rm B}$.

"When taking any point as pivol, consider that point which helps reduce the unknown forces from moment equation." "A" taken as pivot so that FA doesnol become part of moment equation. Tw = TACW (880×0.5) + (200×2.5) = (FB×5) FB = 188N For FA, FA + FB = 1080 FA + 188 = 1080

 $F_{A} = 892 N$

hid.com kasha

^[3] ash

(b) The variation with distance x of force F_A is shown in Fig. 3.2.

On the axes of Fig. 3.2, sketch a graph to show the variation with x of force $F_{\rm B}$.

kashanrashid.com kashanrashid.cor com kashanrašhič com kashanrashid.com kashanrashid.cor S JOLES 2014 Kashanrashi 9702/21/M/J/14 washanrashid.com kashanrashiTurn over

3

A rod PQ is attached at P to a vertical wall, as shown in Fig. 3.1

The length of the rod is 1.60m. The weight W of the rod acts 0.64m from P. The rod is kept horizontal and in equilibrium by a wire attached to Q and to the wall at R. The wire provides a force F on the rod of 44N at 30° to the horizontal.

- (a) Determine
 - (i) the vertical component of F,

94 sin 30

vertical component =N [1]

(ii) the horizontal component of F.

44 cos 30 (38.1 N)

horizontal component =N [1]

(b) By taking moments about P, determine the weight W of the rod.

 $T_{cw} = T_{ACW}$ W × 0.64 = 22×1.6 W = 55N

© UCLES 2015

9702/22/M/J/15

- 9 (c) Explain why the wall must exert a force on the rod at P. Wall must exert a force balance 44 cos 30° and the extra 33N of Weight that is acting downwards.
- (d) On Fig. 3.1, draw an arrow to represent the force acting on the rod at P. Label your arrow with the letter S.

9702/22/M/J/15 [Turn over © UCLES 2015